FASMA 2.0: A Python package for stellar parameters and chemical abundances
نویسندگان
چکیده
منابع مشابه
SPOTting Model Parameters Using a Ready-Made Python Package
The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used...
متن کاملStellar Parameters and Elemental Abundances of Late - G Giants ∗ †
The properties of 322 intermediate-mass late-G giants (comprising 10 planet-host stars) selected as the targets of Okayama Planet Search Program, many of which are red-clump giants, were comprehensively investigated by establishing their various stellar parameters (atmospheric parameters including turbulent velocity fields, metallicity, luminosity, mass, age, projected rotational velocity, etc....
متن کاملPYCHEM: a multivariate analysis package for python
UNLABELLED We have implemented a multivariate statistical analysis toolbox, with an optional standalone graphical user interface (GUI), using the Python scripting language. This is a free and open source project that addresses the need for a multivariate analysis toolbox in Python. Although the functionality provided does not cover the full range of multivariate tools that are available, it has...
متن کاملDREAMTools: a Python package for scoring collaborative
DREAM challenges are community competitions designed to advance computational methods and address fundamental questions in system biology and translational medicine. Each challenge asks participants to develop and apply computational methods to either predict unobserved outcomes or to identify unknown model parameters given a set of training data. Computational methods are evaluated using an au...
متن کاملSeglearn: A Python Package for Learning Sequences and Time Series
seglearn is an open-source python package for machine learning time series or sequences using a sliding window segmentation approach. The implementation provides a flexible pipeline for tackling classification, regression, and forecasting problems with multivariate sequence and contextual data. This package is compatible with scikit-learn and is listed under scikit-learn ”Related Projects”. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Open Source Software
سال: 2020
ISSN: 2475-9066
DOI: 10.21105/joss.02048